Adaptive Cloud Simulation using Position Based
Fluids

Abstract

In this paper, we propose a method for the
simulation of clouds using particles exclu-
sively. The method is based on Position Based
Fluids, which simulates fluids using position
constraints. To reduce the simulation time,
we’ve used adaptive splitting and merging to
concentrate computation on regions where it is
most needed. When clouds are formed, particles
are split so as to add more detail to the generated
cloud surface and when they disappear, particles
are merged back. We implement our adaptive
method on the GPU to accelerate the compu-
tation. While the splitting portion is easily
parallelizable, the merge portion is not. We
develop a simple algorithm to address this prob-
lem and achieve reasonable simulation times.

Keywords: cloud simulation, particle-based,
adaptive simulation

1 Introduction

Outdoor scenes are commonly used in movies
and games, and an important element of such
scenes is clouds. While a clear sky is beautiful
on its own, clouds give depth to the sky.

Cloud generation methods can be divided into
two large categories: procedural and simulation
methods. Procedural methods such as [1,2], try
to generate clouds in real-time with the shape
controlled by the user. However, finding the best
parameters is a trial and error process, which can
be an issue. On the other hand, simulation meth-
ods such as [3, 4] use physically based equa-
tions to move the underlying fluid and generate
clouds.

In this paper, we propose a simulation method
using particles based on Position Based Fluids

[5] for the generation of clouds. For the cloud
generation, we use a heating and cooling process
based on the one used in [4]. However, only this
is not sufficient for generating clouds.

A difficulty seen with simulating clouds with
particles is that the particles do not share their
temperature and cloud density with each other.
As a result, particles in isolation will turn into
clouds but it will not have a meaningful shape.
To solve this, we propose a smoothing method
similar to Position Based Dynamics [6].

We’ve also developed an adaptive method
based on [7]. We propose to use each parti-
cle’s cloud density to detect areas of interest.
Particles are split in areas of most interest and
merged together in areas of least interest.

The system was implemented on the GPU us-
ing CUDA®. One particular issue we’ve found
in this implementation is that the merge algo-
rithm is not inherently parallel, and we show
how we’ve implemented it in the GPU.

The rest of the paper is organized as follows.
In section 2 some related work in the area of
fluid and cloud simulation is shown. In section
3 we show some basics of Position Based Flu-
ids. In section 4 we present the cloud genera-
tion process, how it is discretized using particles
and how the smoothing method works. In sec-
tion 5, some details such as periodic boundary
conditions and parallel adaptive algorithm are
shown. In section 6, results and comparisons of
the method are shown. Finally, we conclude the
paper in section 7.

2 Related work

Cloud generation methods in computer graph-
ics can be divided into procedural methods and
simulation methods. Procedural methods seek

to generate a cloud-like shape, where this shape
is controlled by the user. When possible, these
methods try to generate the clouds in real-time.
These methods include works based on noise
functions [1], fractals [8], interactive design [2,
9,10], and creation from single images [11, 12].

Simulation methods, on the other hand,
seek to generate physically accurate clouds.
Miyazaki et al. [3] used a grid-based simula-
tion [13] to simulate the underlying fluid, and
used differential equations to describe the cloud
generation process. Harris et al. [14] proposed a
similar method, but used slightly different def-
initions for the same process. While not a new
simulation method, Dobashi et al. [4] proposed a
control method based on [3], for the generation
of clouds that have a particular shape.

Particles methods for fluid simulations are
usually based on Smoothed Particle Hydrody-
namics(SPH) [15]. In this, the Navier-Stokes
equation is discretized and solved using the par-
ticles exclusively. While in grid-based meth-
ods such as [13], a linear system of equations
is solved to keep the fluid incompressible, an
equation of state is used to calculate the fluid
pressure in [15]. To improve on this, a number
of methods have been proposed to simulate in-
compressible fluids using SPH [16, 17].

Macklin et al. [5] proposed Position Based
Fluids based on Position Based Dynamics [6]
that doesn’t require to solve the Navier-Stokes
equation, and as a result, larger time steps can
be used and less computational time is required
to simulate incompressible fluids. We’ve used
this method as the basis for our simulation, but
it is not dependent on it, i.e, we can use any par-
ticle method for the simulation. In the next sec-
tion, we describe some more details of Position
Based Fluids.

3 Position Based Fluids

Position Based Fluids(PBF) [5] is a particle-
based method that is capable of simulating in-
compressible fluids, such as water and smoke
[18]. Instead of solving the Navier-Stokes equa-
tion such as in [15] or solving linear system
of equations such as in [17], PBF uses posi-
tion constraints to guarantee the fluid’s density
doesn’t change. The constraints are then solved

similar to Position Based Dynamics(PBD) [6].

Similarly to SPH [15], the density of each
particle is calculated as a weighted sum of the
neighboring particles:

pi =Y m;Wi, (1)
J

where p; is the density of particle i, 7 are the
neighboring particles, m is the mass of each
particle and W; ; is a normalized weight func-
tion, such as the one from [15]. A position con-
straint is defined for each particle so as the den-
sity doesn’t change:

Cifx) = 24 — 1, @)
Po

where C' is the position constraint, X is position
vector for all particles and pg is the rest density
of the fluid. When this constraint is zero for each
particle, we’re able to guarantee the fluid’s den-
sity doesn’t change. However, because this is a
constraint based on each particle’s density and
position, this is a non-linear constraint. To solve
such a constraint, PBD linearizes it by taking
the Taylor’s expansion and using only the linear
component [6]. The expanded constraint is:

Ci(x + Ax) = Ci(x) + Ax - VCi(x), (3)

where Ax is the change vector for all particles,
i.e, how they need to move after the constraint
is solved. By supposing the change vector is in
the same direction as the constraint’s gradient,
we can finally solve the constraints:

CZ(X) + /\IVCZ(X) : VCZ(X) =0, 4)

where we are interested in solving A for each
particle ¢. The particles can finally be moved as
described in [5].

4 Cloud dynamics

Our simulation method is based on the one pro-
posed in [3,4]. In their method, a grid based
simulation is used for the simulation of clouds.
We propose to apply their method to particles,
and show what needs to be done to achieve good
results.

Each particle tracks its temperature, vapor
density and cloud density. At first, the parti-
cles are moved as described in section 3. Next,

the temperature field is smoothed as described
in 4.1. Next, the particles near the ground are
heated up:

dT;

dt
where T; is the temperature of particle ¢, and S,
is the external heat source. Next, buoyancy and
gravity forces are applied to each particle:

T; — T

b

F,=k TJ - kgwij, (6)

= Se,)

where F; is the result force of particle ¢, k; and
kg are user-defined buoyancy and gravity con-
stants, respectively, Tj is the environment tem-
perature at the particle position, w; is the cloud’s
density of particle ¢, and j is the upward direc-
tion vector. In our system, the environment tem-
perature is defined as a linear transition from the
bottom to the top of the domain, where the high-
est temperature is in the bottom of the domain.
When the particle rises, it cools down due to
adiabatic cooling. This process is described by:

dT;
dt

where I'y is the dry adiabatic lapse rate and u,,
is the particle’s vertical velocity. Next, the va-
por and cloud densities of each particle are up-
dated according to the temperature. This pro-
cess, called phase transition, is described by:

dwi dvi

= 8

dt dt ®)
where v; is the vapor’s density for particle :. We
discretize this equation similarly to [3]:

= —Tquy, (7

dw;

= alv; =) (%)
dUZ'

dt _a<Uz - %)7 (9b)

where « is the phase transition rate and ; is the
vapor’s density upper limit for particle z. This
upper limit is calculated as:

~vi = min(A exp(), vi +w;), (10)

B
T, +C
where A, B and C are user-defined phase tran-
sition parameters. When the vapor turns into
cloud, it releases latent heat, and the particle’s
temperature increases:

ar;
dt

Qa(v; — i), (11)

(a) Non-smoothed result

(b) Smoothed result

Figure 1: Two-dimensional results showing dif-
ference between smoothed and non-
smoothed scalar fields. Particles are
shown as spheres and transparency is
related to the cloud’s density.

where () is the latent heat coefficient. While
this should be sufficient to simulate clouds, this
doesn’t generate good results. Figure 1a demon-
strates one such example in two-dimensions.

4.1 Smoothing of scalar fields

The reason for the issue shown in Figure la
is because the scalar fields (temperature, cloud
density and vapor density) are not smooth in
the whole domain, i.e, the difference between
two nearby particles is too large. We propose
a method to smooth the temperature field using
constraints similar to PBF. Figure 1b shows a
two-dimensional result when using our method.

First, we define a field constraint for each par-
ticle:

Ci(T) = V°T;, (12)

where T is the vector of temperature values of
all particles.

When the above constraint is equal to 0, it
means the temperature near particle ¢ is smooth.
By applying the constraint to all particles, we’re
able to smooth the temperature in the whole do-
main. We’ve discretized the above laplacian us-

ing SPH [19]:

T_T X,

2).

v =y
Po - |xigl" +€

-VWi;, (13)
J
where x; ; = X; — X;j, X; is the position vector
for particle ¢, and € is a small constant used to
avoid division by 0.
Similarly to PBF, we linearize the above con-
straint by taking the Taylor’s expansion:

Ci(T+AT) = Ci(T)+AT-VCi(T), (14)

where AT is the change in the temperature field.
By supposing the change is proportional to the
constraint gradient, we have:

AT = \;VrCi(T) (15a)
Ci(T) + X [VoC(T)P =0. (15b)
The constraint gradient is a vector with N com-

ponents(the number of particles) where for each
index k£ we have:

VrCir(T) =
Xi, j .. 1 _ .
ijvwm itk=i (16
_ﬁ’k’ﬁe -VW, otherwise
i,k

which is simply the derivative on the tempera-
ture field for each index. We can finally solve
for \; in equation (15b) and update the particle’s
temperature:
2
N (172)
V1 Ci(T)|

T; =T + kX\iV7rCii(T), (17b)
where T} is the smoothed temperature value, x
is a small constant (taken to be equal to 0.1 in
our experiments) and V7C;;(T) is calculated
as in equation (16). While we want to smooth
the temperature field, if we use « equal to 1, the
temperature field will be too smooth, and the re-
sult clouds will lose some detail, hence a smaller
x value is used.

5 Implementation

In this section, we describe some implementa-
tion details of our system, such as how we’ve
implemented periodic boundary conditions and

the adaptive algorithm for splitting and merging
of particles. Our system was implemented in
CUDA® and we also show some considerations
for an implementation on the GPU.

We define a fixed domain and create fluid par-
ticles uniformly in this domain. Their velocity is
initialized to a random direction and maximum
speed to a user-defined constant. Their tempera-
ture is initialized to the environment temperature
Tp. Their cloud density is initialized to 0 and
vapor density is initialized to k,A exp(n%),
where k, is a user-defined constant(taken to be
0.5 in our tests), and A, B and C are the phase
transition parameters defined in equation (10).

5.1 Periodic boundary conditions

Clouds simulations commonly use periodic
boundary conditions to achieve a constant flow
[3,4]. A property of periodic boundary condi-
tions is that particles in one side of the domain
are influenced by particles in the other side of
the domain.

To achieve such an effect, we’ve used image
particles in the periodic portions of the domain
and boundary particles in the non-periodic por-
tions. In our system, we’ve taken the bottom and
top of the domain to be walls, and the = and z
directions to be periodic.

In the beginning of the simulation, we create
boundary particles which will be used through-
out the simulation. These are created near the
walls of the domain, with a constant spacing of
d, the particle spacing and h deep, the SPH ker-
nel radius. This way, a fluid particle near the
walls should have a full neighborhood. Figure 2
illustrates the domain and boundary particles.

Enough space for all image particles is allo-
cated and reused throughout the simulation. For
instance, a particle in the corner of the domain
needs to be mirrored in the = direction, in the
z direction and in both directions at once: we
need at most three times the number of particles
to store all image particles. A fluid particle is
mirrored only if it is within a distance of h from
the limits of the domain, i.e, if it would influence
a particle in the other side. To save in memory
usage, each image particle only stores its posi-
tion and a pointer to the original fluid particle.

As usual in SPH and PBF implementations,
we maintain three neighborhood lists for each

dI............ Ih
000000000000

Fluid
Domain

7 000000000000
000000000000

Figure 2: Two-dimensional representation of the
fluid domain, periodic regions(green)
and boundary particles(red).

particle: fluid neighbors, image neighbors and
boundary neighbors. Every neighbor is used
in simulation calculations (both PBF and scalar
field smoothing).

In the case of image neighbors, the values of
the original particle (except for the position) are
used in density and constraint calculations. In
the case of boundary neighbors, it requires a
mass and temperature.

The temperature of the boundary particles is
initialized the same way a fluid particle in the
bottom (or top) of the domain would. The mass
is required only in the density of a fluid particle,
which can be written in its final form as:

pi=> miWi;+ Y miWi, — (18)
J k

where p; is the density of the fluid particle i, j
are the fluid and image neighbors, and k are the
boundary neighbors. We could have defined the
boundary particles’ mass in a similar manner to
[20], but we didn’t find it necessary, as the initial
spacing is the same for both fluid and boundary
particles.

5.2 Adaptive particles

One property of particle-based simulations is
that adaptively increasing the number of par-
ticles in areas of interest can be achieved by
simply splitting and merging nearby particles.
We’ve based our adaptive algorithm on [7],
which detects areas of interest, and splits par-
ticles into two smaller ones in areas of interest,

or merge two particles into larger ones in areas
of little interest.

Similarly to [7], each particle stores its adap-
tive level. The adaptive level is initialized to
0, increased when the particle is split and de-
creased when the particle is merged. To pre-
serve the mass conservation property of the sys-
tem, the radius of the particle is defined as h; =
ho - 2_5, and the mass of the particle is defined
asm; = my 2= where [is the adaptive level,
hg is the initial SPH kernel radius and my is the
initial mass.

When particles have different radius, the SPH
kernels need to be changed as well to preserve
the accuracy of the kernel. We found the fol-
lowing to give good results when using PBF:

4 1

Wij =35 (Wi j(hi) + Wi j(hy)) (19a)

A 1
VWi’j = 5 (VW@j(hQ + VWiVj(hj)) (19b)

where W; ;(h;) is the original SPH kernel ap-
plied to the radius h;, and VVM is the new SPH
kernel that is used in all calculations such as
PBF constraints and smoothing of scalar fields.

We define areas of interest based on the par-
ticle’s cloud density. For each particle, a shape
energy E is defined and initialized to 0. The
shape energy is what defines if a particles needs
to be split or merged. At the end of every step,
the shape energy is updated using the following:

E = ky(1 —exp(—kewy)), (20)

where k. and £, are user-defined constants, and
w; the particle’s cloud density. Clouds have
multiple parts to them: dense and not so dense
parts. Using the density directly makes it diffi-
cult to control splitting of particles on the sur-
face of the cloud. However, using the above
shape energy function, particles on the surface
of the cloud have a higher energy due to the ex-
ponential, and this, in turn, becomes easier for
the user to control if they are to be split or not.
Next, particles with a shape energy value
greater than «, are marked to be split, and parti-
cles with a shape energy value lower than [are
marked to be merged, where « and 3 are user-
defined constants. Then, the split and merge al-
gorithms of the following sections are run.
We’ve run an experiment to verify if the above
shape energy is good enough to identify areas of

interest. Figure 3 demonstrates this result. In
this experiment, we’ve run a two-dimensional
simulation and visualized the particle’s shape
energy. Particles that have become clouds have
a high energy. Particles that have ceased to be
clouds, have a low energy and are candidates for
merging.

As a comparison, we’ve visualized the cloud
density similarly to the shape energy, i.e, what
would happen if we used the cloud density di-
rectly as the shape energy. While it can detect
the regions of interest, some detail is clearly be-
ing lost: some regions of the cloud are not dense,
but are still good candidates for splitting.

5.2.1 Splitting

Particles marked to be split are checked if they
can be split into two new particles. The proper-
ties of the new particles are the same as the orig-
inal particle and they are spaced equally from
the original one. To avoid excessive forces due
to the new spacing, the particle is only split if
the new particles are not too close to other exist-
ing ones. For more details on the splitting algo-
rithm, see [7].

To properly parellelize the algorithm, we al-
locate enough memory in the beginning of the
simulation to accomodate a number of split par-
ticles. The splitting algorithm is divided into
two parts. First, the above constraints are ver-
ified and the number of split particles is calcu-
lated. Since the split particle can be removed,
it is reused for one of the new split particles.
To define the position in memory for the second
particle, we use prefix sum [21]. The second
part updates the particles in memory.

5.2.2 Merging

If two particles are neighbors, share the same
level and are marked to be merged, they are ten-
tatively merged into a new one. The properties
of the new particle is the average of the origi-
nal ones and it is placed in the middle between
the two old particles. Also, it is only created if
there are no other particles too close to the new
one [7].

To properly implement this on the GPU, we
need to guarantee that two particles to be merged
are merged between themselves. However, in

T -
0 0.2
(a) Shape energy

. LeIODLeveI 1.Leve| 2

(b) Adaptive level

(c) Cloud result

T -
0 0.1
(d) Cloud density as energy

Figure 3: Result of the shape energy experiment.
Approximately 40,000 particles were
used.

the naive implementation, synchronization is-
sues may happen. For instance, suppose that
three distinct particles ¢, j and k are to be
merged, and that they are neighbors. Without
care, it is possible that particle ¢ merges itself

H
-
L

—_—

h

[First run_ Second run

Figure 4: Illustration of the thread allocation on
the grid for the parallel merge algo-
rithm. Grid cells of the same color
are checked in the same run. Cells of
different colors are neighbors of each
other and must be checked in different
runs. The white cells are checked in
subsequent runs.

with particle 7, but particle 7 merges itself with
particle k, resulting in wrong particle data. This
obviously can be solved if the threads use global
communication and mutual exclusion. But in-
stead of using global communication, we’ve im-
plemented this based on the underlying grid in-
formation.

To accelerate neighborhood search, we’ve
used a uniform grid similar to the index sort grid
shown in [22]. In this method, a linear index is
attributed to each particle based on their posi-
tion on this grid. For each grid cell, we verify
the particles inside this grid cell and merge par-
ticles as necessary.

To guarantee that the above three-particle
synchronization problem doesn’t occur, we need
to check particles in such a way that two neigh-
bor particles are not checked at the same time.
To do that, instead of creating threads on the par-
ticles, we create threads on the underlying uni-
form grid.

For any two threads, the grid cells of each
thread must not be neighbor of each other. Two
grid cells are not neighbors if any particle in the
first cell is not a neighbor of any particle in the
second cell. In other words, the checked cells
must be a minimum distance of d of each other

(in number of cells):

h
d= M ; 1)

where h is the maximum possible SPH kernel
radius and L is the grid cell side length. As a re-
sult, multiple runs of the algorithm must be done
to check the whole underlying grid. In figure 4,
the thread allocation on the grid is illustrated.

6 Results

In the following, we will describe the examples
we’ve run and compare the simulation times.
Our simulation hardware was a machine with a
Intel® Core™i7-4770k CPU, 16GB of memory
and a NVIDIA® GeForce® GTX 780 Ti GPU.
The final renderings were done using mental ray
[23].

In the first example, we did not apply grav-
ity to the whole domain except for the one de-
scribed in equation (6). The ground is heated
in a random pattern using procedural noise [24]
during the whole simulation. For this reason, the
clouds grow without any limitation.

In the second example, not only the gravity’s
force due to the cloud density is applied, but a
constant gravity in the whole domain is also ap-
plied. As a result, the clouds constantly disap-
pear and reappear. Figure 5 shows frame stills
for both examples.

The simulation times for the adaptive and
non-adaptive versions of the examples were
compared. Table 1 shows the results. We’ve set
the examples in such a way that a particle of a
higher level in the adaptive version would have
a similar size to the non-adaptive version, i.e,
the clouds have particles of similar size but not
in the rest of the domain.

The non-adaptive versions have more parti-
cles and, as a result, more time is necessary to
simulate them. In the adaptive versions, even
though we’re using less particles, the visual re-
sults are similar. We can also see from the re-
sults that the proposed splitting and merging al-
gorithms are fast enough that they do not inter-
fere too much in the simulation.

The visual results do differ though, and we
believe this to be a limitation of PBF. As noted
by Macklin et al. [5, 18], their method is sensi-
ble to changes in the simulation resolution and

Example | Particle number PBF Smoothing | Cloud dynamics | Splitting | Merging
Fig. S5a 840k 1087.36 112.35 19.24 - -
Fig. S5b 540k 628.78 64.55 12.50 6.10 23.71
Fig. 5c 930k 1291.85 137.00 20.06 - -
Fig. 5d 500k 748.81 71.94 13.78 6.41 24.63

Table 1: Average time spent in each phase of the method for each example. Times in milliseconds.
Particle number is the maximum number of particles in the whole simulation.

we verify that here. When particles are split
or merged, they introduce small forces in the
neighboring particles, mostly due to their sud-
den movement. However, this doesn’t happen in
the method of Adams et al. [7] when using SPH.

7 Conclusion
(a) Frame 700 of the first example (Non-adaptive)

In this paper, we’ve proposed a particle based
cloud simulation method based on Position
Based Fluids [5]. To guarantee that the gen-
erated clouds make sense, we smooth the tem-
perature field with a method similar to Position
Based Dynamics [6].

g To save on computational time, we’ve imple-
“ mented the proposed method on the GPU using
(b) Frame 700 of the first example (Adaptive) CUDA®. We've also implemented a adaptive
method on the GPU based on [7]. The generated
clouds are similar to previous grid based simu-

lation methods, which is what we expected.

In future work, investigating how PBF can
be applied to particles of varying sizes is very
important for generating high quality images.
Also, a control method similar to [4] is desir-
able.

(c) Frame 500 of the second example (Non-
adaptive)

References

[1] David S. Ebert. Volumetric modeling with
implicit functions: A cloud is born. In
ACM SIGGRAPH 97 Visual Proceedings:
The Art and Interdisciplinary Programs of
SIGGRAPH 97, SIGGRAPH °97, pages
147—, New York, NY, USA, 1997. ACM.

(d) Frame 500 of the second example (Adaptive) [2] Jamie Wither, Antoine Bouthors, and
Marie-Paule Cani. Rapid sketch mod-
Figure 5: Results of the proposed method. eling of clouds. In Proceedings of the

Fifth Eurographics Conference on Sketch-

Based Interfaces and Modeling, SBM’08,
pages 113-118, Aire-la-Ville, Switzerland,

[10]

[11]

Switzerland, 2008. Eurographics Associa-
tion.

Ryo Miyazaki, Yoshinori Dobashi, and To-
moyuki Nishita. Simulation of cumuliform
clouds based on computational fluid dy-
namics. Proc. Eurographics 2002 Short
Presentation, pages 405-410, 2002.

Yoshinori Dobashi, Katsutoshi Kusumoto,
Tomoyuki Nishita, and Tsuyoshi Ya-
mamoto. Feedback control of cumuli-
form cloud formation based on computa-
tional fluid dynamics. ACM Trans. Graph.,
27(3):94:1-94:8, August 2008.

Miles Macklin and Matthias Miiller. Po-
sition based fluids. ACM Trans. Graph.,
32(4):104:1-104:12, July 2013.

Matthias Miiller, Bruno Heidelberger,
Marcus Hennix, and John Ratcliff. Posi-
tion based dynamics. J. Vis. Comun. Image
Represent., 18(2):109-118, April 2007.

Bart Adams, Mark Pauly, Richard Keiser,
and Leonidas J. Guibas. Adaptively sam-
pled particle fluids. In ACM SIGGRAPH
2007 papers, SIGGRAPH °07, New York,
NY, USA, 2007. ACM.

Richard Voss. fourier synthesis of gaussian
fractals: 1f noises, landscapes, and flakes.
State of the Art in Image Synthesis Tutorial
Notes, 10, 1983.

Joshua Schpok, Joseph Simons, David S.
Ebert, and Charles Hansen. A real-time
cloud modeling, rendering, and anima-
tion system. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, SCA ’03,
pages 160-166, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Associa-
tion.

Antoine Bouthors, Fabrice Neyret, et al.
Modeling clouds shape. In Eurographics
(short papers), 2004.

Yoshinori Dobashi, Wataru Iwasaki,
Ayumi Ono, Tsuyoshi Yamamoto, Yong-
hao Yue, and Tomoyuki Nishita. An

[12]

[13]

[14]

[15]

[16]

[17]

[18]

inverse problem approach for auto-
matically adjusting the parameters for
rendering clouds using photographs. ACM
Trans. Graph., 31(6):145, 2012.

Chungiang Yuan, Xiaohui Liang, Shiyu
Hao, Yue Qi, and Qinping Zhao. Mod-
elling cumulus cloud shape from a sin-
gle image. Computer Graphics Forum,
33(6):288-297, 2014.

Jos Stam. Stable fluids. In Proceedings of
the 26th annual conference on Computer
graphics and interactive techniques, SIG-
GRAPH ’99, pages 121-128, New York,
NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

Mark J. Harris, William V. Baxter,
Thorsten Scheuermann, and Anselmo Las-
tra. Simulation of cloud dynamics on
graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Con-
ference on Graphics Hardware, HWWS
’03, pages 92—-101, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics As-
sociation.

Matthias Miiller, David Charypar, and
Markus Gross. Particle-based fluid
simulation for interactive applications.
In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics ~ Symposium on
Computer Animation, SCA ’03, pages
154-159, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Associa-
tion.

B. Solenthaler and R. Pajarola. Predictive-
corrective incompressible sph. In ACM
SIGGRAPH 2009 papers, SIGGRAPH
09, pages 40:1-40:6, New York, NY,
USA, 2009. ACM.

Markus Thmsen, Jens Cornelis, Barbara
Solenthaler, Christopher Horvath, and
Matthias Teschner. Implicit incompress-
ible sph. IEEE Transactions on Visualiza-
tion and Computer Graphics, 20(3):426—
435, March 2014.

Miles Macklin, Matthias Miiller, Nut-
tapong Chentanez, and Tae-Yong Kim.

[19]

[20]

[21]

[22]

[23]

[24]

Unified particle physics for real-time
applications. ACM Trans. Graph.,
33(4):153:1-153:12, July 2014.

Fabiano Petronetto, Afonso Paiva, Marcos
Lage, Geovan Tavares, Helio Lopes, and
Thomas Lewiner. Meshless helmholtz-
hodge decomposition. IEEE Transactions
on Visualization and Computer Graphics,
16(2):338-349, 2010.

Nadir Akinci, Markus IThmsen, Gizem Ak-
inci, Barbara Solenthaler, and Matthias
Teschner. Versatile rigid-fluid coupling for
incompressible sph. ACM Trans. Graph.,
31(4):62:1-62:8, July 2012.

Mark Harris, Shubhabrata Sengupta, and
John D. Owens. Parallel prefix sum (scan)
with cuda. In Hubert Nguyen, editor, GPU
Gems 3. Addison Wesley, August 2007.

Markus Thmsen, Nadir Akinci, Markus
Becker, and Matthias Teschner. A paral-
lel sph implementation on multi-core cpus.
Computer Graphics Forum, 30(1):99-112,
2011.

NVIDIA ARC. mental ray [software], 1
2015.

Stefan Gustavson. Simplex noise demys-
tified. Linkoping University, Linkoping,
Sweden, Research Report, 2005.

